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Abstract—Delay tolerant networks (DTNs) are envisioned to
provide promising applications and services. One critical issue
in DTNs is efficiently forwarding the messages within the delay
requirements while avoiding the cost associated with blind
flooding. To guide the forwarding process, nodes can evaluate
their relationships with each other, in terms of “closeness”,
which summarizes both temporal and spacial information, based
on contact history. However, due to the uncertainty in nodal
mobility, the contact history usually contains fuzziness and
incomplete information. In this paper, we first define and utilize
a fuzzy trust evaluation system for nodes to summarize their
relationships to other nodes, in terms of closeness. We then
propose the fuzzy clusters to organize nodes into overlapped fuzzy
communities based on nodes’ evaluations of closeness. On top
of the fuzzy communities, a novel fuzzy-weight-based delegation
forwarding scheme is proposed to propagate the messages into
all communities while avoiding repeated forwarding in the same
community. Extensive simulation results based on real traces are
presented to support the effectiveness of our scheme.

Index Terms—Delay tolerant networks (DTNs), delegation
forwarding, fuzzy logic, fuzzy clustering, relationship trust.

I. INTRODUCTION

In highly mobile and wireless network environments, such

as delay tolerant networks (DTNs) [1], the network topology

constantly changes and end-to-end paths can hardly be sus-

tained. The DTN is considered to be an important branch for

the next generation of networks and many promising DTN

applications have been proposed. Such networks have been

deployed in the context of human-carried devices (such as

pocket switched networking [2] and opportunistic podcasting

[3]), buses [4], animal tracking [5], and underwater sensor

networks [6].

Nodes’ movements in DTNs are usually repetitive to a

certain extent. Therefore, metrics based on contact history are

usually good hints for predicting future forwarding opportu-

nities. Based on multiple sets of real DTN traces, such as

Haggle [7] and Reality Mining [8], we observe that a long-term

closeness metric can be abstracted to depict the neighboring

relationship between nodes. Based on this inherent property

of the DTN, we propose a FuzzyCom, a packet forwarding

scheme based on the fuzzy closeness metric. The proposed

scheme contains three major components: 1) a fuzzy trust eval-

uation component, 2) a distributed fuzzy clustering component,

and 3) a fuzzy delegation forwarding component.

Although the node mobility in DTNs is usually repetitive

to a certain degree, the uncertainty, fuzziness, and incom-

plete information issues are unavoidable during the prediction

based on the contact history. To provide a scheme that can

serves in practical DTNs, we first develop a fuzzy evaluation

component which can better handle the uncertainty, fuzziness,

and incomplete information in the prediction. We utilize this

component to form relationship trust opinions. The trust

evaluation allows each node to forms its own prediction of

others, based on collected history information. To guide the

forwarding process, each node forms its own trust opinions

towards the relationship to other nodes. A set of rules together

with an inference process based on fuzzy logic [9], which

can comprehensively measure the long-term relationship, are

presented in this component.

A long-term stable neighbor relationship graph can be con-

structed based on the fuzzy trust values associated with the link

between each pair of nodes. We build a heuristic scheme which

can identify grouping structures, denoted as communities,

from the fuzzy neighbor relationship graph. Nodes in the same

community have strong connections between each other, and

the communities may overlap. A node may be a member of

multiple communities at the same time.

We then propose a fuzzy-membership-based delegation for-

warding scheme to actually forward the packet. Since the

inherent group structure of the DTN is available and nodes

in the same community have a high chance of meeting each

other because of the high closeness among these nodes, we

aim to utilize the structural advantage and propagate each

new message to all the communities while reducing redundant

propagation to the same community. Therefore, each copy

of the message maintains a set of thresholds for commu-

nities. The thresholds, representing the previous delegates’

memberships to these communities, provide needed hints for

forwarding decisions.

The contributions of this paper are three-fold. First, we

exploit the fuzzy trust evaluation system to link the contact

history in the DTNs with the prediction of future forwarding

opportunities. Second, instead of the traditional hard clustering

mechanism, we develop the concept of fuzzy communities

in which nodes in the DTNs can belong to more than one

community, and associate each node with a set of fuzzy mem-

bership weights. Third, we propose the delegation forwarding

2010 Fifth IEEE International Conference on Networking, Architecture, and Storage

978-0-7695-4134-1/10 $26.00 © 2010 IEEE

DOI 10.1109/NAS.2010.65

333



Table I List of notations

i, j, u, v, l Nodes i, j, u, v, l
D Average inter-meeting time
F Contact frequency
L Longest inter-meeting time

μ(x) / x Fuzzy membership function / variable
δ Fuzzy trust level / closeness metric
di Node i’s fuzzy degree

N(i) Node i’s local neighborhood
T Threshold for filtering / delegation forwarding
Gl Community l

H / M / L High / Medium / Low

mechanism based on the stable community structure and the

fuzzy membership weights.

II. RELATED WORK

The existing works that are closely related to FuzzyCom

mainly belongs to the following three categories.

A. Characteristics of DTNs

DTNs attempt to route packets via intermittently connected

nodes. Vahdat et al. proposed epidemic routing [10], which is

a oblivious flooding scheme. Spray and wait [11] is another

oblivious flooding scheme, but with a self-limited number of

copies. MaxProp [12] and PRoPHET [13] both select forward-

ing nodes based on the nodes’ encounter history, and both are

examples of how to use system and mobility information to

improve the efficiency of forwarding from oblivious flooding.

While early work in DTNs used a variety of simplistic

random i.i.d. models, such as random waypoint, recent find-

ings [14], [15] show that these models may not be realistic.

Moreover, many recent studies [15], [16], [17] based on real

mobile traces reveal that DTNs process certain social network

properties. Therefore, the social network analysis mechanism

is a good tool for determining the properties involving in

improving the forwarding efficiency. Several social network

metrics, which are measured based on nodes’ direct or indirect

observed encounters, are used to guide the packet forwarding

in [16]. In [18], we also propose to facilitate the content-

based service in DTNs using the social relationships among

nodes. In this paper, the FuzzyCom scheme utilizes fuzzy trust

evaluation to summarize the social relationships among nodes,

and achieves comparable forwarding efficiency by utilizing

local social relationship information.

B. Fuzzy trust evaluation

Fuzzy logic [19] is a form of multi-valued logic derived

from fuzzy set theory to deal with reasoning that is approxi-

mate rather than precise. Fuzzy trust evaluation systems aim

to develop effective and efficient trust management schemes

based on a fuzzy-logic approach, leveraging fuzzy-logic’s

ability to handle uncertainty, fuzziness, and incomplete infor-

mation adaptively. Several Fuzzy trust evaluation systems have

been proposed, such as a prototype P2P reputation system [20]

that helps establish mutual trust among strangers in P2P trans-

action applications, and multi-agent systems [21] designed

for business-interaction review and credibility adjustment. In

this paper, we propose a unique application of fuzzy trust to

comprehensively evaluate the time-space closeness between

nodes in mobile networks.

More recent contributions to the evaluation of trust and

reputation use fuzzy logic concepts [9], [20], [22] and provide

a starting point to improve the modeling capabilities of social

networks. However, these models lack individual trustworthi-

ness and credibility computation. They also do not sufficiently

recognize further applications of fuzzy trust values besides

straightforward security goals.

Fuzzy logic is also widely used in many routing scenarios.

For example, Aboelela et al. [23] propose to use fuzzy logic

to assign different traffic flows to links, based on bandwidth

requirements and pricing. In [24], fuzzy logic is used to deter-

mine the quality of links with regard to the present congestion

situation in the network for shortest path routing. It combines

the network delay with the current outward queue level at a

node as the input of the fuzzy system. Although we also focus

on forwarding efficiency in this paper, we utilize fuzzy logic

to model the links between nodes in quite a different way. We

try to model the long-term social relationships among nodes

instead of combining link quality metrics as in the previous

research results.

C. Relationship-based clustering mechanisms

In traditional social network analyses, one important step is

to identify clusters. Spectral clustering [25] is a well studied

and widely used centralized clustering mechanism. It usually

involves taking the top eigen vectors of some matrix based on

the distance between vertices (or other properties) and then

using them to cluster the vertexes.

In [26], [27], Hui et al. analyze the community structure

from mobility traces and use them for forwarding algorithms,

showing a significant improvement in forwarding efficiency.

However, with a limited number of hops of local information,

neither the community detection nor the weighted network

analysis presented in [26], [27] can be used, which restricts

the practicality of these methods. Our previous work [28]

also utilizes the community structure to guide the forwarding.

However, the community is identified based on single time-

space metric. The communities are also independent of each

other. We provide simulation results by comparing FuzzyCom

with our previous work to examine the advantages of the three

components.

III. FUZZYCOM SCHEME

In this section, we explain in details the three major com-

ponents of the FuzzyCom scheme: the fuzzy trust evaluation

component, the fuzzy clustering component, and the fuzzy

delegation forwarding component.

A. The fuzzy trust evaluation component

The goal of a trust evaluation system is prediction of

reliance on an action (future behavior) based on what a party

knows about the other party (past experience). Since the DTNs
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time T0 1st case

2nd case T0

(a) Encounter frequency

0

T0 1st case

2nd case T

(b) Average contact period

0

T0 1st case

2nd case T

(c) Total contact period

0

T0 1st case

2nd case T

(d) Average delay

Fig. 1. Metrics comparison. A colored box represents the period that two
nodes i, j are within each others’ communication range in time interval [0, T ].

usually show a repetitive nature to a certain degree, it is

reasonable to predict future encounters based on the contact

history. Many existing forwarding mechanisms in the DTNs,

such as the Maxprop [12] and Prophet [13], utilize metrics

extracted from the contact history (e.g. encounter probability)

to guide the packet forwarding process. Since the goal of

the trust evaluation system is highly compatible with the

application in the DTNs, we equip each node with a trust

evaluation component. This component allows the node to

form opinions on its relationships with other nodes in the

network based on its collected history information, and use

the trust value to guide the packet forwarding process.

Note that simple metrics, such as the encounter frequency

shown in Fig. 1(a), can be extracted from the contact history.

The calculations of these metrics are easier than forming

relationship trust. However, these simple metrics may not con-

dense the temporal and spacial previous contact information in

a comprehensive way. Take Fig. 1(a) as an example; although

the encounter frequencies in both cases are the same, the

nodes in the first case clearly have a closer relationship than

the nodes in the second case if the contact pattern repeats.

Moreover, there is uncertainty in the nodes’ future movements,

and each node’s collected information maybe incomplete and

inaccurate. A fuzzy logic based trust evaluation system can

handle these challenges in the DTNs gracefully. Therefore, the

first step of our scheme is to introduce a fuzzy trust system

to evaluate the relationship between each pair of nodes.

In this fuzzy trust evaluation system, each node collects the

contact information with other nodes over time and abstracts

basic temporal and spacial metrics. Several rules are summa-

rized to link the relationship between each pair of nodes with

these basic metrics. Fuzzy logic is then introduced to combine

the reasoning results based on different simple metrics. Each

node will form its own fuzzy trust towards its relationships

with other nodes. Since a pair of nodes will record the same

contact history between them, the formed fuzzy trust will be

the same on both nodes in terms of the closeness between

them.

Basic Metrics. Nodes’ original knowledge, which includes

both temporal and spacial information, is too complex to be

directly used in community detection. Therefore, we should

1

0 1D = 0.19

μlow(D = 0.19) = 0.625

μmedium(D = 0.19) = 0.375

μlow(D) μmedium(D) μhigh(D)

Fig. 2. The sample membership function of D.

condense the encounter history associated with each edge

between two nodes i and j in the DTNs with a numerical

metric, which should comprehensively summarize the char-

acteristics of the encounter history. There are straightforward

candidate metrics, including encounter frequency, total contact

period, average contact period, longest inter-contact period,

and average inter-contact period.

Fig. 1 illustrates the encounter history of two nodes i and

j. In both cases in Fig. 1(a), i and j encounter twice in time

interval T . Although the encounter frequency is the same,

nodes i and j in the first case are closer than in the second

case. Using encounter frequency alone to depict closeness

is not enough. Fig. 1(b) and (c) illustrate similar examples

which indicate that average and total contact periods also have

limits in describing the closeness. In Fig. 1(d), although the

average inter-contact periods are the same, the second case

is less preferable because the longest inter-connect period is

larger. These four examples clearly show that a single simple

metric cannot comprehensively describe the relationship of

two nodes, since each of them only reflect one aspect of the

time-space information.

Therefore, we adopt the fuzzy trust evaluation and form

a trust opinion towards the future contact opportunity. This

trust opinion should comprehensively aggregate a set of basic

metrics, each of which reflecting one aspect of the temporal

and spacial information in the encounter history, to predict the

characteristics of the future encounters. The final trust value

depicts the neighboring relationship.

Fuzzy Reasoning. In fuzzy theory, the membership function

μ(x) for a fuzzy variable x specifies the degree of an element

belonging to a fuzzy set. It maps x into closeness metric δ
in the range [0, 1], where 1 is full membership and 0 is no

membership. δ represents the fuzzy trust level. Fig. 2 shows

the membership functions for modeling the fuzzy trust based

on the average delay D. As one example in Fig. 2, when the

normalized average delay between two nodes is 0.19, we will

believe that the closeness between i and j is low with trust

value 0.625, and believe the closeness is medium with trust

value 0.375. Fig. 3 illustrates the complete fuzzy inference

process. We consider the following three fuzzy variables: the

average delay (D), the contact frequency (F), and the longest

delay (L).

To get comprehensive evaluations on the closeness between

two nodes, we apply the fuzzy inference rules such as follows:
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Table II Fuzzy inference rules

Rules D F L → δ
1 H H H → L
2 H H M → M

3 ∼ 5 ∗ H L → H
6 ∼ 8 H M ∗ → L
9 ∼ 11 H L ∗ → L
12 ∼ 14 M ∗ H → L

Rules D F L → δ
15 M H M → M
16 M M M → M
17 M M L → M
18 M L M → L
19 M L L → M

20 ∼ 22 L ∗ H → M

Rules D F L → δ
23 L H M → H
24 L M M → H
25 L M L → H
26 L L M → M
27 L L L → H

Basic metrics are the average delay (D), the contact frequency (F ), and the longest delay (L). H stands for high, M stands for medium and L stands for
low. ∗ is the wildcard for H , M , and L.

• IF average delay D is low AND contact frequency F is

high AND longest delay L is low, THEN δ is high.

• IF average delay D is medium AND contact frequency

F is medium AND longest delay L is medium, THEN δ
is medium.

• IF average delay D is high AND contact frequency F is

low AND longest delay L is high, THEN δ is low.

Based on the differences of the basic fuzzy variables, we

should develop 27 rules to enumerate all the possible situa-

tions. The detailed rules are listed in Table II. Here, the rule set

is just one example that complies with our intuition towards

the closeness concept in the DTNs. Other rule sets can be

determined similarly, and can reflect different focuses of the

designed system. For example, a rule set that focuses more on

the longest delay L will make the worst case performance of

the proposed scheme better.

One important step in fuzzy reasoning is to determine

the membership function. Since the most typical fuzzy set

membership function has the graph of a triangle, we also

adapt such membership functions in the fuzzy trust system. As

shown in Fig. 3 step 1, we interpret the input of all 27 rules

using the corresponding membership functions. The inputs are

the normalized D, F , and L (current value divided by the

estimated bound).

We infer all rules in parallel and determine the resulting

membership by assessing all terms in the premise. We apply

the fuzzy operator AND to determine the support degree of

the rules, as shown in Fig. 3 step 2, and the AGGREGATE
operator to superimpose the membership curves, as illustrated

in Fig. 3 step 4.

The example in Fig. 3 shows the reasoning process. Assume

that node i is evaluating its relationship with node j. We have

D = 0.3, F = 0.8, and L = 0.4. When we apply rule 5, which

is (L,H,L) ⇒ H , the member function of μlow(D) will be

used to map D to a internal fuzzy weight. Similarly, we can

get the weights of F and L in step 1. In step 2, the AND
operator is applied, and the minimum of the three internal

fuzzy weights implicates the weight that the corresponding

rule can be applied to the current case, in step 3. The results

of rules will aggregate in step 4 to prepare for defuzzifacation.

Defuzzification. Defuzzification is the process of producing

a quantifiable result in fuzzy logic. A useful defuzzification

technique must first add the results of the rules together in

some way. Now, if this triangle was to be cut in a straight

horizontal line somewhere between the top and the bottom, and

the top portion was to be removed, the remaining portion forms

a trapezoid. The first step of defuzzification typically chops

off parts of the graphs to form trapezoids (or other shapes

if the initial shapes were not triangles). In the most common

technique, all of these trapezoids are then superimposed upon

one another, forming a single geometric shape, as illustrated

in Fig. 3 step 4. Then, the centroid of this shape, called the

fuzzy centroid, is calculated. The x coordinate of the centroid

is the defuzzified value. Therefore, we generate the final fuzzy

trust on the closeness δ by defuzzifying from the aggregation

result, taking the centroid of the superimposed membership

curve. The final closeness value δ∗ is calculated as follows:

δ∗ =

∫
μoutput(δ) · δ · dδ∫
μoutput(δ) · dδ , (1)

where μoutput(δ) denotes a membership function aggregated

from the output of the proposed rules. An example defuzzifi-

cation process is shown in Fig. 3 step 5.

B. The fuzzy clustering component

Based on each node’s formed fuzzy trust, we propose a

distributed scheme to identify the underlying communities.

In general, the local community is a reflection of locality.

A community can be defined based on the notion of clique

in graph theory [29]. A clique is a subgraph in which every

vertex is connected to every other vertex in the graph. If a

reasonable threshold T is used to filter the fuzzy trust towards

the closeness and identify cliques on the filtered graph, each

pair of nodes in the clique will have a strong direct neighboring

relationship (larger future encounter probability).

In this paper, we propose the fuzzy clustering. Nodes can

belong to more than one community. Each node will be

associated with a set of fuzzy membership levels. These

membership levels indicate the strength of the association

between that node and a particular community. In Fig. 4,

the example shows the difference between hard and fuzzy

community.

Fuzzy Community Definition. The community is a reflection of

locality. As a criterion to determine whether the relationship

between two nodes is strong enough to claim they are local

neighbors, we adopt a threshold T on the fuzzy closeness value

δ associated with each link in the neighboring graph. For two

nodes u and v in the DTN, if there is a relationship between

u and v, and δuv > T , we consider u and v to be local
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5.Defuzzification

......

3.Implication1.Fuzzy Input

(AND: min)

......

4.Aggregation

......

2.Appply fuzzy operation

......

C=0.528

0 1

Aggregation result

1

0 1

1

0 1

1

0 1

1

0 1
Result of IF condition

1

0 1

Rule 16

1

0 1

1

0 1

Rule 5

1

0 1
Result of IF condition

1

L=0.4D=0.3 F=0.8

D is medium F is medium L is medium

L is lowD is low F is high

Fig. 3. The five steps of fuzzy reasoning.

neighbors. It indicates that u and v are close enough that they

can be categorized in the same community.

Since the closeness metric reflects the fuzzy trust evaluation

result based on the time-space metrics abstracted from the

contact history, the expected delay between local neighbors u
and v will follow certain constraints with this threshold-based

filtering and the previous fuzzy reasoning rules.

In graph theory [29], a clique is a subgraph in which every

vertex is connected to every other vertex in the graph. We ex-

tend this idea and define the closeness-based fuzzy community
in the DTN as follows: For any pair of nodes in the community,

they are local neighbors to each other, i.e. the fuzzy trust,

representing the closeness of their relationship, is larger than

the threshold value T . Due to the strong connections among

nodes in the same community, if one of the nodes in a local

community receives a packet, all the other nodes reside in this

community will get the packet with short delay.

C. The fuzzy delegation forwarding component

In delegation forwarding [30], each message copy maintains

a forwarding threshold T which is initialized as the quality

of its source node, based on some simple metric such as

the average inter-meeting time between the source and the

destination. Whenever node i meets node j, node i forwards a

message to node j if the forwarding quality of node j exceeds

the message’s threshold T , and then the thresholds of both

copies in i and j are set to j’s forwarding quality. In the

case that j’s quality is better than i’s T but j already has the

message copy, the copy is not forwarded, but the T of the

copy in i will still be set to j’s quality.

Instead of using the simple metric as in the original dele-

gation forwarding [30], we develop a delegation forwarding

component that utilizes the set of fuzzy membership levels

associated with each node. The goal of our method is to

Algorithm 1 Fuzzy delegation forwarding

Update thresholds in m

1: for each community Gl do
2: if M(i, Gl) > tGl then
3: Set tGl = M(i, Gl);
4: end if
5: end for

Decision process of node i

1: for each message m in i’s buffer do
2: Examine the thresholds of m;
3: if ∃ l that satisfies M(j,Gl) > tGl then
4: if node j never receives message m before then
5: Node i duplicate m and forward to j;
6: end if
7: for each l that satisfies M(j,Gl) > tGl do
8: Set tGl = M(j,Gl) on m in node i;
9: end for

10: end if
11: end for

propagate each message to cover all of the communities, and

therefore to cover the intended destination, while reducing

the unnecessary multiple propagations to the same commu-

nity. After the previous two steps, fuzzy trust evaluation and

clustering, for each node i, we will know the communities it

belongs to Gl, and for each community that node i belongs

to, i should calculate its membership factor Mi towards each

community it belongs to. For example:

M(i, Gl) =

∑
u∈Gl

δiu

|Gl − 1| (2)

which is the average fuzzy closeness value between node i
and each node in Gl. For those communities that i is not a

member of, the membership value will be 0.

337



G3

6

2

0.7 0.7 0.7

0.8

0.9 0.8
G1

G2 0.7

0.9

0.61 3

54

(a) Hard clustering

G3

6

2

0.8

0.9 0.8
G1

1 3

54

0.7

0.9 0.7 0.7 0.7

0.6G2

(b) Fuzzy clustering

Fig. 4. Fuzzy community formation. Shadowed nodes will potentially
propagate message among communities.
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Fig. 5. The fuzzy delegation process. Each message m is associated with a
set of thresholds represent the qualities of its previous delegates. When a node
j that is closer to more than one communities than m’s previous delegates
encounters host i, m’s thresholds will be updated and j will be assigned the
duty of delegate.

The core of this process is that when a node i with a copy of

a message m meets another node j which has never received

m, i needs to decide whether it should propagate the message

to j and ask j to act as one delegate of the message.

The basic idea of this decision is that node i needs to

answer the question of whether node j has better forwarding

quality than node i. Here, better forwarding quality means j
can forward message m to more communities than i does, or

j has closer relationships with the current communities that i
can cover. If the answer is yes, node i should replicate and

forward m to j.

To further reduce the unnecessary forwarding, we propose

the following two rules. First, node i should only forward m
to node j if j has better forwarding quality than all the nodes

that i has met. We can examine one example. We assume u has

better forwarding quality than j, and j has better forwarding

quality than i. If i meets u first, i will forward the packet to u.

Node i then meets node j. i should not forward to j because u
already has the packet and u has better forwarding quality than

j. Second, we should also piggy back information about the

communities that the packet has traversed and prevent repeated

replication back to these communities. These two rules can be

guaranteed by Algorithm 1. In this algorithm, each message

will be associated with a set of thresholds, {tG1 , tG2 , ...},
which are initialized to zeros.
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Fig. 6. The synthetic mobility traces are generated from map of FAU.

IV. SIMULATION

We conduct simulation studies to evaluate the effectiveness

of the proposed scheme. Here we compare the effectiveness

of the FuzzyCom scheme with three other methods: Epi-

demic [10], Delegation [30], and LocalCom [28].

A. Simulation setup

We ran trace-driven simulations in a customized simulator

with two different datasets: Haggle project [7] and MIT Reality

Mining [8]. In Haggle, 41 iMotes were distributed to students

attending Infocom 2005. In Reality, 97 smart phones were

deployed to students and staff at MIT. In both datasets,

bluetooth contacts were logged and provided. Each contact

record includes the start time, end time, and ID of the nodes in

contact. For each round of simulation, a portion (default 30%)

of the dataset is used as the contact history. The remaining

portion is used to evaluate the performances of the forwarding

schemes after the community detection.

We generated synthetic traces according to a community

mobility model proposed in [15], which is considered to be

more realistic than i.i.d. models. The traces were generated

using maps of the Florida Atlantic University (FAU) buildings,

as shown in Fig. 6(a). The class schedules and enrollment

information of a certain number (default 200) of graduate and

undergraduate students from four departments were collected.

The trace of a node, which represents a network device carried

by a student, was generated according to a Markov chain,

as illustrated in Fig. 6(b). The states and probabilities in

the Markov chain were determined by the students’ class

schedules and enrollment information.

All packets had an expiration TTL, which represented the

delay requirement. Each node knew only its own contact his-

tory before the fuzzy clustering. Each simulation was repeated

30 times with different random seeds for statistical confidence.

We primarily focused on the delivery rates of different

scenarios. We also investigated the delay and the cost in terms

of the total number of forwards. We compare the effectiveness

of our scheme with three other techniques: Epidemic [10],

Delegation [30], and LocalCom [28]. In Epidemic forwarding,

a node copies a packet to every new node it encounters that

has not received a copy. The original Delegation scheme is a
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TABLE I
Characteristics of three datasets

Dataset Haggle Reality Synthetic
Device iMotes Phone N/A

Network type Bluetooth Bluetooth N/A
Duration (days) 3 246 10

Number of nodes 41 97 200
Number of contacts 22, 459 54, 667 Vary

non-oblivious forwarding scheme for DTNs. A node forwards

a packet to a potential forwarder encountered if that forwarder

has a higher quality (in terms of mean inter-meeting time

between the potential forwarder and the destination) than

other potential forwarders that the node met before. Our

previous work LocalCom [28] also utilizes the community

structure. However, the communities are constructed based on

a single simple metric which is average delay. LocalCom also

uses non-overlapped community definition and broker pruning

to reduce redundant forwarding, which lead to a different

performance compared with FuzzyCom.

To illustrate the effectiveness of our scheme uniformly, we

set T = 0.7 and the rules are set the same as in Table II in

all simulations. These two parameters are actually adjustable

and a better result can be achieved if these parameters are

tuned according to scenarios in the specific application. The

maximum D, F , and L recorded in each dataset were used as

the bound to normalize the input.

B. Simulation results

We examine the effectiveness (i.e. delivery rate) and the

cost (i.e. number of forwards) of the four schemes in three

very different scenarios in Figs. 7 and 8. The delivery rate

and the total number of forwards both increase as the delay

requirement on the packet lessens, as shown in Figs. 7 and 8.

Since the Epidemic forwarding scheme includes all the paths

that can satisfy the corresponding TTL requirement, the re-

sulting delivery rate and total number of forwards represent

the upper bound in each scenario and reflect the underlying

characteristics of the contact distribution in the scenario.

The delivery rates of the forwarding algorithms are com-

pared in Figs. 7 with different message TTL. The results show

that our FuzzyCom delivers only about 5% fewer messages

than Epidemic. The FuzzyCom scheme also shows a steady

improvement in terms of delivery rate over the original del-

egation scheme, since it combines the underlying community

structure with a deliberated forwarding plan. FuzzyCom also

outperforms LocalCom (about 5% more), since it takes more

information into considerations (e.g. longest delay) and uses

the overlapped fuzzy communities.

Figs. 8 further illustrates the advantage of the FuzzyCom

scheme. Since FuzzyCom utilizes a novel fuzzy weight based

delegation forwarding scheme to propagate the messages into

all communities while avoiding repeated forwarding in the

same community, the cost is significantly lower than that of

the Epidemic scheme. When counting the total number of

forwards, we also included the messages used in collecting

and evaluating the ‘quality’ of the neighboring relationships

among nodes. The FuzzyCom scheme also shows a cost close

to delegation forwarding in all three cases which represent a

deliberated scheme that was mainly designed to significantly

reduce the total number of forwards. The costs of FuzzyCom

and LocalCom are close to each other. These two methods use

quite different forwarding control schemes, but both achieve

a satisfactory reduction of cost compared to other schemes.

Combining the results in Figs. 8 with the improvements in

Figs. 7, FuzzyCom shows steady performance in terms of

forwarding efficiency in all three different DTN environments.

Simulation results confirmed that, compared with other

algorithms, including the current community-based scheme

and the original Delegation scheme, FuzzyCom has a high

delivery rate and a low cost.

V. CONCLUSION

In this paper, we propose a delegation forwarding scheme

based on the long-term neighboring relationship structure

of the DTNs. We first exploit fuzzy trust to construct the

weighted graph abstraction of the DTN to better support

the packet forwarding. The fuzzy reasoning rules provide a

comprehensive way to combine the time-space statistics from

the contact history into a single closeness metric. We then

propose the fuzzy clustering mechanism to organize nodes

into overlapped fuzzy communities based on the closeness. A

fuzzy weight based delegation forwarding scheme is proposed

to propagate the messages into all communities while avoiding

repeated forwarding in the same community. Extensive results

of simulations based on real and synthetic traces are provided

to further illustrate the efficiency of the proposed scheme.

In the future, we plan to enhance the community formation

scheme to incorporate the dynamically changing closeness

metric in the distributed scheme.
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